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NON-UNIFORM MAGNETOHYDRODYNAMIC SHOCK PROPAGATION,

WITH SPECIAL REFERENCE TO CYLINDRICAL AND SPHERICAL SHOCK WAVES

Roy M. Gundersen

Summary

Previous work on non-uniform shock propagation in monatomic

conducting gases is generalized to an arbitrary value of the adiabatic

index. Specifically, the perturbation generated when an initially uniform

hydromagnetic shock of arbitrary strength impinges on an area variation is

determined, the problem being linearized on the basis of small area variations.

When the shock encounters the area change, the shock strength is altered, and

the subsequent flow is non-isentropic. There are two distinct contributions to

the perturbation, namely, a permanent perturbation due to the area change and

a transient reflected disturbance, and expressions for these are obtained.

A first order relation between area change and shock strength is

obtained and integrated numerically to give an area-shock strength relationship

valid for channels with finite continuous area variation. Particular area

distributions are utilized to discuss converging cylindrical and spherical

hydromagnetic shocks.

The present theory includes results on non-uniform gas dynamic shock

propagation as a special case.

Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin,
under Contract No. DA-1l-022-ORD-2059.
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1. Introduction

In recent years, there has been a great deal of work on shock propagation

in channels with small non-uniform cross-sectional area distributions. By the

use of a linearization based on small area variations, Chester [ 1] found that

the pressure perturbation produced when an initially plane shock wave passed

through a non-uniform transition section, which joined two channels of constant

but unequal cross-sectional area, was given by:

-K(P 2 - P1)[AAI/A,

where P2 - P1 was the initial pressure discontinuity across the shock, [&A]

the net change in area and the parameter K a monotonically decreasing function

of the shock strength with only a small total variation.

Chester started with the full three-dimensional equations of motion and

then carried out an averaging process by considering only the average pressure.

This final restriction means, however, that the same results must be obtainable

by investigating the problem from the very beginning by a one-dimensional

approach. This very important simplification, which permits of great extension,

was first observed by Paul Germain, and Chester's results obtained through a

one-dimensional analysis by Gundersen [ 6], extracts from which appeared in

[7 ], the analysis being based on characteristic perturbations presented by

Germain and Gundersen [ 5].

It is surprising that the simple one- dimensional approach led to an

improvement, namely, the term [A A]/A in Chester's work was replaced by

A/A where A was the perturbed area distribution. This showed clearly the
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first order differential relation between the area change and shock strength

at any point in the non-uniform section. The significance of such a relation

was first realized by Chisnell [ 2], who was led to it in a different way,

* essentially by assuming that Chesterts steady state solution, valid for

large time only, could be utilized. Chisnell used an integrated form (in

closed-form) of the shock strength-area relationship to give an approximate

description of the motion of the shock in terms of the area of the duct. By

suitable choices of the area distribution, a description of converging cylindrical

and spherical shocks was given, and the results checked by comparison with

previous similarity solutions, valid in the neighborhood of the points of

collapse of the shocks. The comparison showed the remarkable accuracy of

Chisnell's work.

Extensions of Chisnellts work, including closed-form shock strength-

area relations, for piston-driven shocks, where reflected waves from the

piston come back to interact with the shock and modify its strength, were

given for linear and quadratic area distributions, the appropriate ones for

cylindrical and spherical shocks, in [ 8] and [ 9]. Those results are, of

course, applicable to reflections from a contact layer.

Piston-driven shocks propagating through ducts with arbitrary, though

small, area variations were considered by Mirels [15] by a source distribution

method and in [10] by the small perturbation method, and the solution given

in infinite series form.

The problem originally considered by Chester has been extended to

the case where the fluidlin front of the shock was not at rest in [ 11] and
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to the case that the area perturbation was also time-dependent in [12].

Recently, many others have worked on similar or related problems,

e. g., in [16] and [1 7], Chester's results were rederived. Recently, it

was shown [13] that in a monatomic conducting gas subjected to a transverse

magnetic field, the perturbation produced when an initially uniform plane

hydromagnetic shock of arbitrary strength .3ncountered an area variation

could be determined, the problem being linearized on the basis of small

area variations, and the solution presented in a form which included the

usual gas dynamic results, described in the foregoing, as a special case.

In (14), a theory rather parallel to that of Chisnell [ ] was developed and

converging cylindrical and spherical hydromagnetic shocks discussed. The

limitation of a monatomic gas was due to the fact that analogs of the usual

Riemann invariants could then be determined explicitly. In the present

paper, it is shown that this restriction is unnecessary in spite of the fact

that analogs of the Riemann invariants cannot be determined explicitly, at

least in terms of elementary functions.

The problem considered is that of an initially uniform plane hydromagnetic

shock travelling with constant speed into an ideal gas at rest in a duct which

has a section of non-uniform area. To ensure that all changes in the motion

of the shock are due to the area variations, it is assumed that these are

confined to the region x > 0, whereas to the left of the cross-section

x = 0, the tube is of constant cross-sectional area, and the shock propagates

with initially constant speed in this portion of the tube.

When the shock encounters the area variation, it is perturbed, the

shock strength altered and the subsequent flow non-isentropic. There are
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two distinct contributions to the disturbance, viz., a permanent perturbation

due directly to the area variation and a transient disturbance, due to reflections

from the shock of the permanent disturbance, which propagates with velocity

2 21
= [c + b

where c is the local speed of sound and b the Alfv~n speed, with respect

to the flow behind the shock.

In the neighborhood of the shock, the ultimate effect is an altered

shock strength and concomitant pressure change behind the shock. When

the main flow behind the shock has speed < w, the transient reflected

disturbance is convected to the left with speed w relative to the fluid

while for flow speed > w, this disturbance is convected to the right

with speed w relative to the main flow. This latter must be added to the

steady flow solution. Expressions for these various contributions are

obtained.

Specifically, it is shown that the pressure perturbation immediately

behind the incident shock is given by:

P? = - K(T, m ) (P- P )A!/A 2

where perturbations are denoted by a bar, PZ - P is the original pressure

discontinuity across the shock, A2 the cross-sectional area, a the shock

strength defined as a density ratio and mI = b1/c 1 , a measure of the applied

transverse field.

For all m,, lim K? = 0.5 and lim K. = 0.39414 for y = 7/5.
2- -
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But these are precisely the limits for the corresponding parameter in the gas

dynamic case which corresponds to m1 = 0 so there is the result: For ver7

weak or very strong shocks [in an asymptotic sense], the results are independent

of the applied field and agree with the usual gas dynamic results.

In magnetohydrodynamics, strong shocks occur for a- close to

(y+1)/(y- 1), where y is the adiabatic index, or for a very strong

applied field for any a >1, i.e., mI is then large.

For mI = 0, K2 is a monotonically decreasing function of the shock

strength and agrees exactly with the corresponding parameter in the afore-

mentioned publications. For any m1 0 0, there no longer is a monotonic

variation with a , but each curve is concave upward with curves for greater

m lying beneath those for lesser m1 and all curves pass through the points

(a, K2 ) = (1, 0.5) and (6, 0.39414) for y = 7/5 . Further, for fixed

incident shock strength, K2 is a monotonically decreasing function of

ml , i.e., in a diverging (converging) channel, the pressure decrement

(increment) is decreased (decreased) by increasing the applied field.

If the area variations are confined to a transition section of finite

extent joining two portions of constant cross-sectional area, the total effect

of the passage through the transition section is an altered shock strength

with the shock asymptotically becoming again uniform. Qualitatively, the

motion of the shock is independent of whether the main flow behind the

shock has speed < - or > w .

Finally, the first order differential relation between shock strength

and area variation is integrated numerically, and particular area distributions
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are used to consider converging cylindrical and spherical magnetohydro-

dynamic shocks which, in contrast to plane shocks, are inherently unstable

and ultimately become strong. This section generalizes the results of [14]

to arbitrary values of the adiabatic index y, though numerical tables are

presented only for y = 7/5.

Specifically, it is shown that the strengths of converging cylindrical

and spherical magnetohydrodynamic shocks near the centers of these fronts

are proportional to D-K and DZK , respectively, independent of the

applied field, where D is the distance from the centers and K = 0. 39414

for y = 7/5.

The theory of gas dynamic shock propagation in non-uniform ducts

is contained as a special case of the theory presented in this paper, i. e.,

it is obtained simply by setting m1 = 0, so that there is a check on the

theory presented herein.
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2. General Theory

The quasi-one-dimensional non-steady motion of an ideal, inviscid,

perfectly conducting compressible fluid subjected to a transverse magnetic

field, i.e., the induction B = (0, 0, B), is governed by the system of equations:

Zot/lY-1) + 2ucxi'Y- 1) + cux + UcAx/A = 0(2.1)

ut + uu x+ Zcc/(y- 1) + bZB/B -c 2 s/y(y-l)c =0 (2.2)

Bt +uBx +Bux =0 (2.3)

st +USx =0 (2.4)

2 2
where u, c, s, p, b = B /MIip ý, y and A are, respectively, the particle

velocity, local speed of sound, specific entropy, density, square of the

Alfv~n speed, permeability, ratio of specific heat at constant pressure cP

and at constant volume c and cross-sectional area of the channel.v

Partial derivatives are denoted by subscripts, and all dependent variables

are function of x and t alone save A which is considered time independent.

The characteristics of this system are:

dxS= U, U + •, U -
dt +w

30 2 2
where w = c +b
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For an arbitrary isentropic constant area flow, the base flow in the

neighborhood of which perturbations will be considered, the basic system

of equations (2.1), (2.2) and (2.3) may be written in the following

characteristic form [3]:

x (u + W)t =0 (2.5)

x - (u- W)ta =0 (2.6)

X t -U t 0 (2.7)

(W _ c2 )BP/B + Wu + 2cc/(Y - 1) = 0 (28)

( z- c )B/a - ua + Zcca/(-y - 1) = 0 (2.9)

Bt/B - 2ct/(Y - l)c = 0 (2.10)

with characteristic parameters (a, I, •).
From equation (2. 10), it is clear that the quantity B/c 2 ( 2 - I) is

constant along each particle path, which is a well-known consequence of

the assumption of infinite electrical conductivity, I.e., the magnetic field

is "frozen" into the fluid, and for a constant state or a simple wave flow,

B/c2(y" -1) is constant throughout the flow so that equations (2. 8) and

(2. 9) may be written as:
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u + Zwc/(y - 1)c =0 (2.11)

-u +Zc/(y - l)c= 0 (2.12)

Since p=r 2 c /(-), B =r 1c /( ,'1) with constants rI and r.,

2 =r-c2/(Y - l)/r 2kcZ/(y - 1)

so that 2 2

c =c [1+k ]

where X = 2(2-y)/(y-1).

For the case of a monatomic gas y = 5/3, and equations (2. 11) and

(2. 12) may be integrated explicitly to yield:

u/Z + [l+kc]3//k = u/Z + (w/c) 3/k =a (2.13)

- u/2 + [l+kc] 3/k = - u/2 + (w/c)3/k = P (2.14)

where (a, P) may be considered as generalizations of the usual Riemann

invariants.

For an arbitrary value of y, the solutions of equations (10) and (11)

may formally be written as:

u/2+ f[l+kc ]z dc/(y-l) = a (2.15)

-u/2 + f [l + kc ]dc/(y-l)= (2.16)



#310 -11-

The solution of the present problem for a monatomic gas was obtained

by a transformation of dependent variables which made (2. 13) and (2. 14)

linear relations. This same technique is employed for an arbitrary value of

y. Although the integrals appearing in equations (2. 15) and ( 2.16) may

be evaluated in terms of hypergeometric functions, an explicit evaluation is

unnecessary. The introduction of the new dependent variable w f [I+ kc]dc

transforms equations (2. 1) and (2. 2) to:

wt/(y- 1) +uwx/(y - 1) + wu/2 + uwAx/2A = o (2.17)

ut/Z + UUx/2 +c Wx/(y - 1) = CZsx/2 y(Y -1)cv (2.18)

where use has been made of the relation B/B = 2cx/(y - l)c and (2. 3) omitted.

Adding and subtracting equations (2. 17) and (Z. 18) gives the system to be

utilized in the sequel:

wt/(Y-l) +ut/Z+ (u+W)[ux/2+wx/(y-l)] -uwAx//2A+ c 2 sx/2y(y-li)cv (2.19)

wt/(Y-l) - ut/ = -uwAx/ZA-c sx/zy(Y-l)cv (2. 20)

st +usx =0 (2. 21)

The close analogy of this system with the basic equations of gas dynamics

should be noted, viz., a hyperbolic system of three non-linear first order partial

differential equations with Riemann invariants which are linear relations between
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the dependent variables. The system is, in fact, the magnetohydrodynamic

generalization of such and includes the gas dynamic equations as a special

case. For k =0, w- =c, w =c and the system (2.19) - (2.21) reduces

exactly to that used by Gundersen [ 6], [ 7] to obtain the solution of the

propagation of a shock in a tube of varying cross-section and perturbations

of simple waves. The above system has also been utilized to obtain the

perturbation of a magnetohydrodynamic simple wave, and the results will

be presented in a forthcoming paper.

For the present problem, it is only necessary to perturb in the

neighborhood of a constant state (isentropic), and a formal linearization of

equations (Z. 19) - (Z. 21) in the neighborhood of this known state, denoted

by the subscript zero, leads to the following system of linear equations for

the terms of first order, denoted by the subscript one:

Rt + (u 0 + w )R = -u 0 o0A /2A 0 + c2os/2,(Y-l)c (2.22)

S+ (u 0 - 0 ) Sx = -U 0WOx/2A0 - c0s /Zy(y-l)c (2.23)

sit + us0 = 0 (2.24)

where R = u1/2 + wl/(Y-l) , S= -u/Z + Wl/(Y-l) .

According to (2. 24), sI remains constant along the particle paths of

the given flow, i. e., along dx/dt = u.0 Since p0 (dx - uodt) is the exact

differential of a function 4n which, when equated to a constant defines the
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particle paths, the solution of (2. 24) may be written as:

-s 1 = QN •)

with Q an arbitrary differentiable function.

It is convenient to define a new function To(x, t) by

z 2
c0 S1  =c CO O p 0ol ) 0 y(y-l)cvTo

Then, the general solution to (2. 22) - (2. 24) may be written as:

R = F[x- (u 0 +W0 )t] + E[x- u0 t]/W0 - u0w0A1/2A 0(u 0 +W0 ) (2.25)

S = G[x - (u 0 - W0 )t] + E[x - u0 t]/0 0  - U0 A1/2A0(uo - w0 ) (2.26)

T = ZE[x - u0t] (2.27)

in terms of three arbitrary functions of one argument. From the general solution,

the four distinct contributions to the perturbation may be noted, namely, one

due to the entropy variations, which travels along the particle paths and is

measured by E, a disturbance due directly to the area variations, a perturbation

propagating with velocity w, ý the true speed of sound, with respect to the

fluid along the family of characteristics x - (u 0 + 0 )t = constant and measured

by F and a perturbation propagating with velocity w0 with respect to the fluid

along the family of characteristics x - (u 0 -w 0 )t = constant and measured by G.



-14- #310

3. Solution in the Vicinity of the Incident Shock

Jump conditions across normal hydromagnetic shocks have been

considered by several authors, e.g., Friedrichs [4]. Let U be the shock

velocity, v = U - u and the subscripts one and two designate flow quantities

in the regions in front of and behind the shock. Then the analogs of the

Rankine-Hugoniot relations are:

PlVl = pzv 2

BV1 -- 2v2

2 2 2 2

pVl + P1 + B2Ai = p 2 + P + B /21

yPI/( y-l)Pl + v1/2 + BI/PyL = yP2/(Y-l)p 2 +v/2+ B2/P2+ .

For gas-dynamical shocks, knowledge of the flow in front of and one

parameter behind the shock suffices to give a complete solution. For magneto-

hydrodynamic shocks, all parameters behind the shock may be expressed in

terms of those in front and two parameters, e. g., the shock strength and one

which gives a measure of the applied field.

Let w :pp, = T=P2/PI, m=b/c, n =u/c, M=v/c and

2 2• 2 2q = W /c = 1 + m . Then the following relations hold, where n1 is assumed

zero and e = (y+l)/(y-l):
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21

I/m2= = (1=)b/b=

ST or e -i - ym (I-W)3/?]/(O-(F)

2 2mcm c = lT 1T I

-1) + (-yior/(y-l)] + Z/(y-/) } 2r/(e-(r)
M 1

2 2

M =M /TrT2 1

n.(l- I) M0/T)2

which express the flow parameters behind the shock in terms of or and min.

The effect of an area variation on the motion of an initially uniform

hydromagnetic shock propagating with constant speed into a fluid at rest

will now be determilied by the use of the general solution for the non-isentropic

perturbation of a constant state as given by equations (2. 25) - (2. 27) . The

particular method of generation of the shock is left open save that what ever

that may be, the mechanism is sufficiently far removed so that no reflections

come back to interfere with the basic interaction considered herein. From

the formulation of the problem, there is no mechanism downstream of the shock

which could give rise to the term F[X - (u z- W2)t] in (2. 25) so that the

0
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pressure perturbation behind the shock may be obtained by setting F = 0.

This gives:

2--

u/2 + w2 /(y-1) - c. s/Zwy(y-I)c = - u T2 A./A2 lu 2 + ' 2 ) (3.2)

where perturbations of a base quantity are denoted by a bar. Since

w2 = W2i2/c2 -s2/y( y-l)c = P/2YP 2 - c 2/(2-")c2

the latter from the equation of state, equation (3. 2) may be written as:

-2- 2---

u/2 + m cz/(y-l)q + c 2 /2¥P 2 = - u 2,zA 2 /2A?(u 2 + '2)

or

2 2--uT/c [ y(mZ2+l)-lfPz/y(y-l)Pzq 2 m- 2- q ~-)=q)A
2 2+ mP q - mp./p~q -n 2qA/(n +q2 )A 2

(3.3)

From the jump conditions, equations (3. 1):

T 21 (0 G_ +l2+m2yo[30-l-60a-+3(0+l)ar2 2- 2 3 / /2
T ( __ )[ -a_ _Ym2( 10) 3/2] a

2 23 3

c 2
2  2(0-oi)(T-l){2(0+l)/y+ml[(l+O) +a(O-3)]}

so that equation (3.3) gives:
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z/P= - K [r, mrA 2/A 2  (3.4)

where

K =nL2 [(02 13 +- 60a + 3(0+1)02 2v-3]/2 - 2 (0

1 n 2+ q- 2  0o"- 2-1 rn(l-o")3/2 q 2 (Y-i)

2 3[2(1 /-y + 2(0+1)( 0- 2) 0/Y+ M~{(+)(+) 2-) + (0-3)( 20-1)r2 +(3-O)w

2[~el 2(0--1){zWe +1)/-y + M 2 1+0) + o( 0-3)]]

Y(m 2 +1) -1 (02-1)1 + m ¥(y{30- 1- 60- + 3(10+1)o- 2-2r 3 }/2

y(y-,)q 2 3Y(-~2 00- - 1 - ym 1 (1-17)3/2

or

P? K (- K2, m) (P IP" PA/A (3.5)

where

K2  1 m(-c)/ 2 3 KI(0+I)(I-) + ymI (I-T) /2

Strong shocks can occur in hydromagnetic3 in two ways, namely, for

a close to (y+l)/(y-l) , e.g., 6 for y = 7/5, orforavery strong

applied field for any T > 1, i.e., mI is then large.

For all m1 and y . 7/5, lim K 0.5 and lim K2 = 0. 39414; but
2 -l+ a--6-

these are precisely the limits for the corresponding parameter in the gas dynamic



S-18- #310

case which corresponds to mI = 0 so there is the result:

For very weak or very strong shocks [in an asymptotic sense], the results

are independent of the applied field and agree with the usual gas dynamic

results.

For m1 = 0, K2 is a monotonically decreasing function of the shock

strength and agrees precisely with the corresponding parameter in the gas

dynamic theory. For any m1 # 0, the monotonicity is lost, but each curve

is concave upward with curves for greater m1 lying below those for lesser

m, , and all curves pass through the points (a, K?) = (1, 0. 5) and

(6, 0. 39414) for y = 7/5. Further, for fixed incident shock strength, K2

is a monotonically decreasing function of mI so that in a diverging (converging)

channel, the pressure decrement (increment) is decreased (decreased) by

increasing the applied field. Qualitively, the motion of the shock is independent

of whether the main flow speed behind the shock is < w or > w.

Graphs of K2 are presented in Figures 1, 2, 3 and 4 for y = 7/5.
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4. The Reflected Disturbance

To complete the solution, an expression for the reflected disturbance

must be obtained and this is done through equation (2. 26). The evaluation of

the arbitrary function G is most readily accomplished by noting that the

system (2. 25) - (2. 27) may be written as:

u 2/c 2 + 2m 22C/(y-I)q c2 + P2/YP 2 qq = - q An + )A
2 2---2 222

-u2/C 2 + 2m2 c 2/(y-l) q2 c2 + P2/y P2 q 2 = - n 2q 2 A2 /(n 2 -q2 )A2 + 2G[x-(u2Lc- )tYc2

Thus on addition, which serves to eliminate u2 :

2 2 2 3
(y-l)+ ym2  m2 - I[ - YmI 1 l-) 1/2] P

q q 2A 2 (y-1) q 2 (y-l) (02_l)0 +m 2 Y[30.1_60+ 3(0+l)Tr Z2o2 3 ]/z} P2

2 --
+ 2 = G[x- (u- •)t]/cz

(n 2 " q 2 )A2

Evaluating this on the shock, x = U t, and replacing T2/P by its

value from (3.4) gives:

G[X ]/c. = K3A2 [ 6kl]/A2

where
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X=x- (u 2- W 2)t

6 =(M+ nO)/(M 2 + q2 )

2 K1 1 2  2 1

K3 n'2 2 (y-l)q 2  - 2(e )0 + m2yo[30e1 .6e•+3(e+i) 2_ 23]/2

Thus:

/ P = " IA 2[ xJ/A. - g2A2[ 6 X]/A 2  (4.1)

where:

n q2  [ 0-l - Ym (1-0-) /2
22 231

n -q 2  (O+l)(+-l) ÷ ym (0-l-) /2
2 2 12 3Y-1+ym2 m2  (0-,r) [ 0o--l- YmI(1--) /2]

q2 y(y -1) (y-l)q 2  (e 2l)0.+m2ya.[30-I_60o-+3(0+l)o-2 . zo 3 ]/2

z= K 2 - 1

The parameter 6 is a monotonic increasing function of cr (for all mIn) and

varies between the limits

0. 5 < 6 < 1. 6429

for all mI and y = 7/5. Graphs are presented in Figure 5. It might be noted

that Chester's graph of the corresponding parameter is incorrect, and, apparently,

the reciprocal of the true value has been plotted.
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When the flow speed behind the shock is < w?, a disturbance will

be reflected to the left downstream of the shock, and, from (4. 1), the

pressure perturbation will ultimately be given by:

P2 = " X2A2 [65 ]/Az

since A = 0 for x< 0.

For flow speed > w 2 behind the shock, the reflected disturbance

will be convected to the right and the pressure perturbation is given by (4. 1).

Graphs of the parameter 2 are presented in Figure 6 for y = 7/5.
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5. The Shock Strength Area Relation

Equation (3. 5) is a first order differential relation between area and

shock strength, namely,

dA/A + dT/(T-l) K ((r, mi) =0 (5.1)

where

T- - - 1 [ -- YM 2(1-r) 3 /2j/()-O.)

and the solution may be written as:

A v exp[ - f dT

(T-1)K (o' in) ] (5.2)

or

A =v F(r, mI1 ) (5.3)

where

0 2-1+ m y[3 0-1 - 6o- + 3(l + )a 2-Z3 1/2

lo ~~n)- 0o(t1 [ 0+ 1+ Ym 00-l) /2]K K2 ((, in1 )

and v is a constant of integration. The integral is given in terms of or since

K _ is known in terms of a.

Equation (5. 2) contains the results of Chisnell as a special case, viz.,

mI = 0 and may be considered as the magnetohydrodynamic generalization of

such. Chisnell showed that an integrated form of the shock strength-area

relation could be utilized to discuss channels with finite continuous area

variations and obtained a check on his theory by choosing particular area

distributions and showed that converging cylindrical and spherical shocks
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could be discussed with remarkable accuracy. Equation (5. 2) also includes

as a special case previous work on monatomic conducting fluids presented in

[14].

Some comments can be made immediately about converging cylindrical

and spherical hydromagnetic shocks which can be discussed as particular

cases by choosing linear and quadratic area distributions. The cylindrical

shock corresponds to a wedge-shaped channel with cross-sectional area

proportional to the distance from the center of the shock front while the

spherical shock corresponds to a conical channel with area proportional to

the square of the distance from the center. Although plane shocks are stable,

converging cylindrical and spherical shocks are unstable and as the shock

converges, its strength increases and ultimately becomes singular at the

center. In the neighborhood of the singular point, (5. 2) shows that A

is proportional to T l/K* where K* is the asymptotic limit of K2 , so

that the shock strengths of converging cylindrical and spherical hydromagnetic

shocks near the center are proportional, respectively, to D-K and D-ZK

where D is the distance of the shock from its axis or point of symmetry.

But K = 0. 394141, independent of the applied field, and this is exactly

the value Chisnell obtained for gas dynamic shocks! Thus the result;

Near the axis or point of symmetry, the strengths of converging

cylindrical and spherical magnetohydrodynamic shocks are independent

of the applied field and are given by the usual gas dynamic theory.
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6. Evaluation of F(o", mi1)

Since K2 is given in terms of o, the integrated form of the shock

strength-area relation in (S. 3) is that chosen for numerical evaluation.

F defines a one parameter family of functions with mI1 as parameter and

tables of this function for various values of mI are presented in the

Appendix. The tables refer to the evaluation of

-log e F(or, ml1) = feli 2) 0iynxl2 / x m)
1.011 (-)XI[01Y Ie 3(lex K2 ]2 ]X m1

The tables may be used in several ways, e. g., suppose there is a

section of variable area connecting two channels of constant but unequal area,

say A, and A2 , then for a given mi,

F( a-2 , i ) A2  (6.1)

F(- 1 , mI1 ) A

If A1 , A2 and a1 are known, r2 may be obtained by interpolating inversely

from the tables.

After passage through the transition section, the shock travels with this

altered strength, o-,, and ultimately becomes uniform. Conversely, given (r ,

r2? mI and A1, the tables may be utilized to determine what A. would give

the desired cr2 . Equation (6.1) could also be considered as one for mI with

rl, Pr 2 , A1 and A2 prescribed.

Converging cylindrical and spherical shocks may be treated by choosing

channels with areas proportional to D and D2 , respectively, where D is
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the distance from the center.

The author wishes to thank Mr. I. Al-Abdulla for carrying out the

computations employed in this paper.I.
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The tables refer to the evaluation of Z(o, mi) U

I )21) +m 2 y[30-1- 6÷x+3(1+e)x2 2x3]/2
Floge F(o-, ml)=f 2 2 dx

1. e (Ox)XI)x[D+l+YI m(x-1)/ 2 ] K 2 (a-, in1) J
The numbers in parentheses refer to the power of ten by which each entry is

to be multiplied.

Z(oP 0) Z(O, 1)
1.2 6.65000 (0) 6.66275 (0)
1.4 1.36500 (1) 1.37038 (1)
1.6 2.06500 (1) 2.07765 (1)
1.8 2.76500 (1) '2.78834 (1)
2.0 3.46500 (1) 3.50263 (1)

2.2 4.16500 (1) 4.22054 (1)
2.4 4.86500 (1) 4.94203 (1)
2.6 5.56500 (1) 5.66694 (1)
2.8 6.26500 (1) 6. 39504 (1)
3.0 6.96500 (1) 7.12610 (1)

3.2 7.66500 (1) 7.85988 (1)3.4 8.36500 (1) 8.59614 (1)
3.6 9.06500 (1) 9.33473 (1)
3.8 9.76500 (1) 1.00755 (2)
4.0 1.04650 (2) 1.08185 (2)

4.2 1.11650 (2) 1.15638 (2)
4.4 1. 18650 (2) 1.23116 (2)
4.6 1.25650 (2) 1.30623 (2)
4.8 1.32650 (2) 1.38167 (2)
5.0 1.39650 (2) 1.45761 (2)

5.2 1.46500 (2) 1.53426 (2)5.4 1.53650 (2) 1.61206 (2)
5.6 1.60650 (2) 1.69194 (2)
5.8 1.67650 (2) 1.77700 (2)
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Z(r Z(f, 3)

1.2 6.70180 (0) 6.76868 (0)

1.4 1.38736 (1) 1.41736 (1)
1.6 2.11842 (1) 2.18986 (1)
1.8 2.86366 (1) 2.98974 (I)

2.0 3.62160 (1) 3.80758 (1)

2.2 4.38964 (1) 4.63410 (1)

2.4 5.16488 (1) 5.46244 ( 1 )

2.6 5.94468 (1) 6.28849 (1)

2.8 6.72696 (1) 7.11011 (1)

3.0 7.51020 (1) 7.92647 (1)

3.2 8.29343 (1) 8.73751 (1)

3.4 9.07609 (1) 9.54358 (I)

3.6 9.85792 (1) 1.03452 (2)

3.8 1.06390 (2) 1. 11432 (2)

4.0 1.14194 (2) 1. 19383 (2)

4.2 1.22000 (2) 1.27314 (2)

4.4 1.29803 (2) 1.35234 (2)

4.6 1.37623 (2) 1.43155 (2)

4.8 1.45467 (2) 1.51093 (2)

5.0 1.53355 (2) 1.59070 (2)

5.2 1.61318 (2) 1.67117 (2)

5.4 1.69410 (2) 1. 75300 (2)

5.6 1.77755 (2) 1.83738 (2)

5.8 1.86748 (2) 1.92857 (2)
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Figure 1

A graph of the parameter :KJ v-s. a- for mn = 0
2he 1the ordinary gas dynamic cae arid for mI = 2 and 6.
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Figure 2

A graph of the parameter Kvs. . for m1 1, 3 and 10.
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Figure 3

A graph of the parameter K2 vs. a- for m - 100.



#~31U -1

K2

.0.50

0.40

0.30

MIR 1000

0.20

0.10-

p pI II_

S2 3 4 5 6

Figure 4

A graph of the parameter K2 vs. ( for m 1000.

Near the minimum point of the graph, this curve crosses that for m,1 100,
though it lies beneath the latter for all other (T . This indicates a possible
reversal of effects for very large applied fields, i. e., an increase in mI
may lead to an increase in K 2. More extensive numerical investiqations
are thus indicated.
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Figure 5

A graph of the parameter 6 vs. o-.

Since there is a small total variation with mi, only the case m= 0 is given.
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Figure 6

A graph of the parameter • vs. T-.
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